GNAO: the new AO facility for Gemini North, facility overview and project updates

Gaetano Sivo^{*1}, Julia Scharwächter², Masen Lamb², Manuel Lazo¹, Celia Blain²,
Stephen Goodsell^{2,3}, Claudio Gaspar¹, Marcos Van Dam⁴, William Rambold², Joe D'amato², Kim Tomasino-Reed², Martin Tschimmel¹, Jennifer Lotz², Ricardo Cardenes¹, Tim Gaggstatter¹, Pedro Gigoux¹, Thomas Schneider², Charles Cavedoni²,
Stacy Kang², Stanislas Karewicz², Heather Carr², Logan Sato², Jesse Ball², Paul Hirst², John White², Lindsay Magill¹, Molly Grogan², Suresh Sivanandam⁵, Adam Muzzin⁶,
Scott Chapman⁷, Jennifer Dunn⁸, Dan Kerley⁸, Jean-Pierre Veran⁸, Morten Andersen⁹,
Franck Marchis¹⁰, Ruben Diaz¹, John Blakeslee², Michael Pierce¹¹, Rodrigo Carrasco¹,
Hwyhyun Kim², Anja Feldmeier-Krause^{12,13}, Alan Mcconnachie⁸, James Jee¹⁴, Wesley
Fraser⁸, Mark Ammons¹⁵, Christopher Packham¹⁶, John Bally¹⁷, Trent Dupuy¹⁸, Daniel Huber¹⁹, Marie Lemoine-Busserolle², Thomas Puzia²⁰, Paolo Turri²¹, Chadwick Trujillo²², and Janice Lee²

¹NSF's NOIRLab / Gemini Observatory – Chile ²NSF's NOIRLab / Gemini Observatory – United States ³Department of Physics [Durham University] – United Kingdom ⁴Flat Wavefront – New Zealand ⁵UNIVERSITY OF TORONTO – Canada ⁶York University – Canada ⁷Dalhousie University – Canada ⁸NRC Herzberg Astronomy and Astrophysics – Canada ⁹European Southern Observatory – Germany ¹⁰SETI Institute – United States ¹¹University of Wyoming – United States ¹²Max Planck Institute for Extraterrestrial Physics – Germany ¹³University of Chicago – United States ¹⁴Yonsei University – South Korea ¹⁵Lawrence Livermore National Laboratory – United States ¹⁶The University of Texas at San Antonio – United States ¹⁷University of Colorado – United States ¹⁸University of Edinburgh – United Kingdom ¹⁹University of Hawaii – United States ²⁰Pontifica Universidad de Chile – Chile ²¹University of British Columbia – Canada ²²Northern Arizona University – United States

Abstract

The Gemini North Adaptive Optics (GNAO) facility is the upcoming AO facility for Gemini North providing a state-of-the-art AO system for surveys and time domain science in the era of JWST and Rubin operations. GNAO will be optimized to feed the Gemini infrared Multi Object Spectrograph (GIRMOS). While GIRMOS is the primary science driver for defining the capabilities of GNAO, any instrument operating with an f/32 beam could be deployed using GNAO. The GNAO project includes the development of a new laser guide star facility which will consist of four side launched laser beams supporting the two primary AO modes of GNAO: a wide-field mode providing an improved image quality over natural seeing for a 2-arcminute circular field-of-view using GLAO and a narrow-field mode providing near diffraction-limited performance over a 20 \times 20 arcsecond square field-of-view using LTAO.

The GNAO wide field mode will enable GIRMOS's multi-IFU configuration in which the science beam to each individual IFU will be additionally corrected using multi-object AO within GIRMOS. The GNAO narrow field mode will feed the GIRMOS tiled IFU configuration in which all IFUs are combined into a "super"-IFU in the center of the field. GNAO will include a new Real Time Controller (RTC), Facility System Controller and new Adaptive Optics Bench, each at different stages of their development lifecycle.

We present an overview of the GNAO facility, its science goals and provide a status update of the development of each facility product.

Keywords: GNAO, LTAO, GLAO, multiple LGS, GIRMOS