Adaptive Optics Telemetry Format

Tiago Gomes^{*1,2}, Carlos Correia^{2,3}, Lisa Bardou⁴, Thierry Fusco^{5,6}, Caroline Kulcsar⁷, Tim Morris⁴, Nuno Morujão^{2,8}, Benoit Neichel⁵, James Osborn⁴, and Paulo J V Garcia^{1,2}

¹Faculdade de Engenharia da Universidade do Porto – Portugal
²CENTRA - Center for Astrophysics and Gravitation – Portugal
³Space ODT - Optical Deblurring Technologies – Portugal
⁴Durham University – United Kingdom
⁵Aix-Marseille Université – Aix-Marseille Université - AMU – France
⁶DOTA, ONERA, Université Paris Saclay [Palaiseau] – Université Paris-Saclay, ONERA – France
⁷Institut d'Optique Graduate School – Université Paris-Saclay, Institut d'Optique Graduate School,
CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France, Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France. – France
⁸Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto – Portugal

Abstract

Context:There is a growing volume of AO telemetry data being generated in facility-class ground-based VIS/NIR observatories, which has highlighted the need for a standardized data exchange format to enable performance analysis and AO R&D involving extensive telemetry mining, processing, and curation.

Aims:In this paper, we present the Adaptive Optics Telemetry (AOT) data exchange format, designed to facilitate the sharing of AO telemetry from visible/infrared ground-based observatories. The AOT format is built on the Flexible Image Transport System (FITS) and aims to provide a clear and consistent means of accessing data across multiple systems and configurations, including classical natural and single/multiple laser guide-star AO systems.

Methods: AOT was designed with two main use-cases in mind 1) atmospheric turbulence parameters estimation and 2) Point-spread function reconstruction (PSF-R). To support this format, a Python package that enables data conversion, reading, writing and exploration of AOT files was developed.

Results: The AOT format has a well-defined file structure, including data fields, descriptions, data types, units, and expected data dimensions. A supporting Python package has been made publicly available. To demonstrate the format's versatility, we packaged data from four different 8-meter class telescopes of vastly different configurations.

Keywords: Adaptive Optics Telemetry, Data Exchange Format, Data Standardization, Point Spread Function Reconstruction, Turbulence

^{*}Speaker