NIRVANA-VIS, an AO-assisted speckle holography add-on for visible wavelengths

Maria Bergomi*^{†1}, Kalyan Radhakrishnan¹, Carmelo Arcidiacono¹, Silvio Di Rosa^{1,2}, Marco Dima¹, Davide Greggio¹, Luca Marafatto³, Jacopo Farinato³, Valentina Viotto³, Florian Briegel⁴, Thomas Bertram⁴, Peter Bizenberger⁵, Roberto Ragazzoni³, and Tom Herbst⁴

¹INAF - Osservatorio Astronomico di Padova – Italy
²Department of Physics and Astronomy- University of Padova – Italy
³INAF - Osservatorio Astronomico di Padova – Italy
⁴Max-Planck-Institut für Astronomie – Germany
⁵Max Planck Institute for Astronomy – Germany

Abstract

Nirvana-Vis project proposes a visible-wavelength imaging channel upgrade for LINC-NIRVANA (LN), the Italian-German high angular resolution imager installed on the Large Binocular Telescope (LBT). LN is a near-infrared imager operating in the JHK photometric bands, equipped with a multiple-FoV MCAO system to deliver a near diffraction-limited two arcminutes FoV. The instrument has demonstrated on-sky consistent and stable Ground Layer Adaptive Optics (GLAO) correction, improving the FWHM of the PSF up to a factor 3. We plan to exploit in such a wide corrected field, the technique of AO-assisted speckle holography, in which images are reconstructed from a long series of short exposure frames whose image quality has been sharpened by adaptive optics for the visible regime. We will present the opto-mechanical upgrade allowing this additional mode (under italian PNRR STILES project financement) while keeping all functionalities of the NIRVANA instrument.

Keywords: WFS, NIRVANA, LBT, Visible, Speckle

^{*}Speaker

[†]Corresponding author: maria.bergomi@inaf.it