Performance Evaluation of the Pyramid Wavefront Sensor for GPI 2.0

Saavidra Perera^{*1}, Jerome Maire¹, Clarissa Do O², Jayke Nguyen², Vincent Chambouleyron³, Daniel Levinstein², Quinn Konopacky², Jeffery Chilcote⁴, Joeleff Fitzsimmons⁵, Randall Hamper⁴, Dan Kerley⁵, Bruce Macintosh³, Christian Marois⁵, Fredrik Rantakyro⁶, Dmitry Savransky⁷, Jean-Pierre Veran⁵, Guido Agapito⁸, S. Mark Ammons⁹, Marco Bonaglia⁸, Marc-Andre Boucher¹⁰, Jennifer Dunn⁵, Simone Esposito⁸, Guillaume Filion¹⁰, Jean Thomas Landry¹⁰, Olivier Lardière⁵, Duan Li⁷, Daren Dillon³, Alex Madurowicz¹¹, Dillon Peng⁴, Lisa Poyneer⁹, and Eckhart Spalding⁴

¹University of California [San Diego] – United States
²University of California, San Diego – United States
³University of California [Santa Cruz] – United States
⁴University of Notre Dame [Indiana] – United States
⁵National Research Council of Canada – Canada
⁶Gemini Observatory – United States
⁷Cornell University – United States
⁸INAF - Osservatorio Astrofisico di Arcetri – Italy
⁹Lawrence Livermore National Laboratory – United States
¹⁰Opto-Mecanique de Precision – Canada
¹¹Standford University – United States

Abstract

The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and characterize young, Jupiter-mass exoplanets. After six years of operation at Gemini South in Chile, the instrument is being upgraded and moved to Gemini North in Hawaii as GPI 2.0. As part of this upgrade, several improvements will be made to the adaptive optics (AO) system. This includes replacing the current Shack-Hartmann wavefront sensor (WFS) with a pyramid wavefront sensor (PWFS) and a custom EMCCD. These changes are expected to increase GPI's sky coverage by accessing fainter targets, improving corrections on fainter stars and allowing faster and ultra-low latency operations on brighter targets. The PWFS subsystem was independently built and tested in order to verify its performance before its integration into the GPI 2.0 instrument. Here, we will present the results from these pre-integration tests, which will include assessing the throughput, pupil image quality and linearity with and without modulation of the PWFS.

Keywords: pyramid wavefront sensor, adaptive optics, gemini planet imager, atmospheric turbulence

*Speaker