Toward on-sky testing of model-based RL for AO

Jalo Nousiainen^{*†1}, Markus Kasper², Byron Engler², and Cedric Taissir Heritier³

¹Lappeenranta University of Technology – Finland

 $^2 \rm European$ Southern Observatory – Germany

³Laboratoire d'Astrophysique de Marseille – Aix Marseille Université, Institut National des Sciences de

l'Univers, Centre National d'Études Spatiales [Toulouse], Centre National de la Recherche Scientifique – France

Abstract

One of the main objectives of the next generation of ground-based telescopes is to directly image Earth-like exoplanets. However, identifying these exoplanets can be challenging as they are located very close to their host stars. To overcome the challenge, a careful design of the adaptive optics (AO) system's control algorithm is necessary.

Recently, there has been an emerging interest in improving AO control using data-driven methods such as Reinforcement Learning (RL), a subfield of machine learning where the control of a system is learned through interaction with the environment. In particular model-based RL enables an automated, selftuning control for AO. It can handle temporal and misregistration errors and adapt to non-linear wavefront sensing while remaining efficient in training and execution.

In this study, we apply and adapt a specific RL method called Policy Optimizations for AO (PO4AO) to the GHOST test bench at ESO headquarters, where we demonstrate strong performance on a simulated cascaded AO system. We explore the predictive and self-calibrating capabilities of the method and show that our current implementation using PyTorch introduces only a latency of $300\$\mu\m . We also discuss and introduce the oper source implementation of the method.

Keywords: Machine learning, reinforcement learning, model predictive control, high contrast imaging

*Speaker

[†]Corresponding author: jalo.nousiainen@lut.fi